CONTENTS

Section 1 - SAFETY! ..5
 Notes & Warnings ... 5
 Safety Notice to Users of this Manual .. 5
 Safety Requirements for String Pin Pinsetters .. 6
 Safety Guidelines .. 6
 Center Mechanic .. 7

Section 2 - Overview ... 8
 Machine Component Location and Description .. 8
 Pinsetter is Ready for Bowling .. 9

Section 3 - Operation and Cycle ... 10
 Actions That Start a Machine Cycle .. 10
 Description of Cycles During Bowling (With the Time Delay Switch Set at S3) 10
 Strike .. 10
 First Ball Thrown is a Gutter Ball .. 10
 First Ball Thrown Part of Pins Knocked Down .. 10
 After Second Ball of Frame is Thrown ... 10
 Pinsetter Switch Functions ... 11
 Disentangle Switch ... 11
 Pins Up Control Switch (Pins Up Switch In On Position) ... 12
 String Brake Switch .. 13
 Pin Setting Cam ... 14
 String Control Unit (Spic) .. 15

Section 4 - Adjustments ... 16
 String Tension Adjustments ... 16
 String Brake Adjustments ... 17
 Pin Slow Setting Adjustments ... 19
 Fallen Pin Detection Adjustment ... 21

Section 5 - Maintenance & Service .. 22
 Maintenance ... 22
 Rotating Pins .. 22
 Pin Strings ... 22
 Pin String Inspection and Repairing Worn String ... 22
 New String Installation ... 23
 Lubrication .. 26
 Routine .. 26
 Quarterly (3 Month) ... 27
 Semi Annually (6 Month) .. 27
 Annually ... 28
Section 6 - Troubleshooting ...31
Solutions to Common Problems ...31
1. Machine and Accelerator Will Not Run ...31
2. One Machine Does Not Run ...31
3. Accelerator Will Not Run ..31
4. Machine Will Not Stop After Completing a Cycle ..31
5. Machine Starts and Stops When Attempting to Lift Pins ..31
6. Machine Cycles and All Down Pins are Recognized by the Scorer. The Pinsetter Respots One or More of the Fallen Pins ..32
7. After First Ball, the Head Pin is Bottomed Out on the Centering Cone Instead of Having a Gap of Approximately 80 mm ..32
8. A Machine is Malfunctioning But You Cannot Isolate the Problem32
9. Pins Fall When Being Spotted or are not Respotted Accurately32

Section 7 - Cable Routing and Connections ..33
Electrical Control Boxes for Odd and Even Lanes ...33
StringPin Pinsetter ...37
PCB Components and Connections ...43
Vector String Pinsetter Interface ..48
Interface Cable Installation ...50
Foul Cable Installation ...51
Ball Detect and Reflector Mounting and Cable Installation ..52
Remote Ball Detect Switch Cable Installation ..54
Pinsetter Interface Configuration ...54
SES String Machine ..55
Pin Input Cable Installation ...56
Vector Interface PCB ...58

Section 8: Cables ..62
Section 1 - SAFETY!

NOTES & WARNINGS

Throughout this publication, “Warnings”, and “Cautions” (accompanied by one of the International HAZARD Symbols) are used to alert the mechanic to special instructions concerning a particular service or operation that may be hazardous if performed incorrectly or carelessly. They are defined below. OBSERVE AND READ THEM CAREFULLY!

These “Safety Alerts” alone cannot eliminate the hazards that they signal. Strict compliance to these special instructions when performing the service, plus training and “Common Sense” operation are major accident prevention measures.

NOTE or IMPORTANT!:Will designate significant informational notes.

WARNING! Will designate a mechanical or nonelectrical alert which could potentially cause personal injury or death.

WARNING! Will designate electrical alerts which could potentially cause personal injury or death.

CAUTION! Will designate an alert which could potentially cause product damage.

Will designate grounding alerts.

SAFETY NOTICE TO USERS OF THIS MANUAL

This manual has been written and published by the Service Department of Brunswick Bowling and Billiards to aid the reader when servicing or installing the products described.

It is assumed that these personnel are familiar with, and have been trained in, the servicing or installation procedures of these products, which includes the use of common mechanic’s hand tools and any special Brunswick or recommended tools from other suppliers.

We could not possibly know of and advise the reader of all conceivable procedures by which a service might be performed and of the possible hazards and/or results of each method. We have not attempted any such wide evaluation. Therefore, anyone who uses a service procedure and/or tool, which is not recommended by Brunswick, must first completely satisfy himself that neither his nor the product’s safety will be endangered by the service procedure selected.

All information, illustrations and specifications contained in this manual are based on the latest product information available at the time of publication.

It should be kept in mind, while working on the product, that the electrical system is capable of violent and damaging short circuits or severe electrical shocks. When performing any work where electrical terminals could possibly be grounded or touched by the mechanic, the power to the product should be disconnected prior to servicing and remain disconnected until servicing is complete.
SAFETY REQUIREMENTS FOR STRING PIN PINSETTERS

As with all machinery, a certain amount of risk is involved in working on the String Pin Pinsetter. However, if the necessary care, knowledge and responsibility are exercised, damage to the pinsetter and people involved in accidents can be avoided. The following steps should be taken:

Safety Guidelines

1. **ONLY PROPERLY TRAINED PEOPLE ARE QUALIFIED TO WORK ON OR OPERATE THE PINSETTER.**

2. Never bypass, disable, or tamper with the safety interlocks or pinsetter function switches.

3. Always face toward the machine when using the ladder to climb onto or off the machine. Only one person should be on the ladder at any time.

4. Suitable clothing must be worn (for example: rubber-soled shoes). Do not wear loose clothing such as neckties or smocks that could get caught in moving parts. Remove rings, watches, earrings, bracelets and other jewelry to avoid injury.

5. Care should be taken while near the front of the machine. Accidentally blocking the photocell beam will cause the pinsetter to cycle.

6. Always turn the Pinsetter off before working on the machine.

7. If more than one person is working on a machine or if a stop/run switch will be out of reach while working on the machine, lockout the controller power switch to prevent a person from turning on the pinsetter before the other person says he/she is clear of the pinsetter.

8. Fire extinguishers must be on hand and maintained properly. Keep oily rags and other combustibles in approved fire proof containers.

9. If more than one person is working on a machine, be sure the other person is CLEAR before restarting the machine.

10. When working in the pinsetter area while machines are in operation, ear protection should be worn. Sound levels greater than 83db can be experienced within 1.6 meters of operating machines.

11. Never work on or around the pinsetter while under the influence of alcohol, drugs, or any other substance that can impair your physical abilities or mental judgment.

12. Always use the correct tools for the job.

13. Poisonous or toxic cleaners must not be used. Always check the material safety data sheets before using new cleaners.

14. Always use factory approved parts when repairing the pinsetter. Using substandard parts may pose a safety risk.
CENTER MECHANIC
Center Mechanics are defined as persons who:

- have undergone the appropriate technical training and

- have been instructed by the responsible pinsetter operator in the operation of the pinsetter and the current valid safety guidelines.
Section 2 - Overview

MACHINE COMPONENT LOCATION AND DESCRIPTION

Figure 2-1. Machine Component Location and Description

1 L.H. MOTOR AND GEAR ASSEMBLY
2 RETURN BLOCKS FOR STRING WAGONS (PIN UP POSITION)
3 CHAIN TRACK
4 STRING LIMITING BAR
5 STRING OPERATING BAR (WAGON)
6 CHAIN TENSION SPRING
7 STRING TENSION LEVER AND STRING RESERVE SPOOL
8 DISENTANGLING BAR AND SWITCH
9 STRING CONTROL UNIT (SPIC)
10 PIN CENTERING PLATE
11 PIN CENTERING CONES
12 SLOW SETTING PIN CAM
13 CONTROL CAM AND SWITCH CLUSTER
14 BALL BOX WITH ACCELERATOR
15 PIT CURTAIN
16 BALL CUSHION
17 RETURN KICKBACK
18 STRING TENSION SPRING
PINSETTER IS READY FOR BOWLING

1. With ten pins setting on the pin deck, the string wagon will be positioned at the front of the machine. Refer to Figure 2-2.

2. The magnet in the cam control box will be positioned just above the home switch. Refer to Figure 2-2.
Section 3 - Operation and Cycle

ACTIONS THAT START A MACHINE CYCLE

Any of the following occurrences will cycle the pinsetter.

1. Pushing the reset buttons on the low voltage box.
2. Pushing the reset buttons on the ball rack.
3. A bowling ball knocking over one or more pins.
4. The second ball in a frame breaking the photo cell beam.

DESCRIPTION OF CYCLES DURING BOWLING (WITH THE TIME DELAY SWITCH SET AT S3)

Strike

Three seconds after the first pin falls, all ten pins are raised to the full up position and reset.

First Ball Thrown is a Gutter Ball

The machine will receive and remember the ball detect signal. There is no machine activity and after five seconds the machine is ready for the second ball.

First Ball Thrown Part of Pins Knocked Down

Three seconds after the first pin is knocked over all ten pins will be raised. Those that were left standing will be respotted.

After Second Ball of Frame is Thrown

Three seconds after receiving a ball detect signal the machine will raise remaining pins and set ten new pins.
PINSETTER SWITCH FUNCTIONS

Disentangle Switch

If the cord of two or more pins become tangled as they are being raised, the tension lever assembly will rotate and actuate the disentangle switch. Refer to Figure 3-1.

Figure 3-1. Disentangle Switch Activation

1 DISENTANGLE SWITCH

When the disentangle switch is actuated and the pins are not fully up, the machine will stop raising the pins and start shaking them up and down. This shaking action will continue until the pins are no longer tangled or a service person turns off the machine and manually corrects the problem. Refer to Figure 3-2.

Figure 3-2. Shaking Action of Disentangle Switch

1 1ST SHAKE
2 2ND SHAKE
3 3RD SHAKE
4 FINAL SHAKE - ALL FREE
Pins Up Control Switch (Pins Up Switch In On Position)

The machine will lift the pins to the full up position. At this time, the magnet in the cam control box will actuate the pins up control switch and stop the machine. Refer to Figure 3-3.

Figure 3-3. Pins Up Position

1 PINSETTER
2 CAM CONTROL BOX
3 PINS UP CONTROL SWITCH (ONLY ADJUSTABLE WITH GEAR)
4 MAGNET
String Brake Switch

The string brake switch holds the pins knocked over from the first ball of a standing pin cycle, in the up position. After the string wagon has passed the up position, the magnet in the cam box activates the string brake switch which tells the string control unit to keep the knocked over pins in the up position. Refer to Figure 3-4.

Figure 3-4. String Brake Switch

1 PINSETTER
2 CAM CONTROL BOX
3 MAGNET
4 STRING BRAKE SWITCH (FOR THE SECOND BALL FRAME)
Pin Setting Cam

The pin setting cam’s function is to slow down the speed at which the pins are moving as they are being set on first ball or respotted on second ball. There is one of these cams on each side of the frame at the pit end of the pinsetter. This cam changes the path of the string during the down motion which slows the travel of the pins. Reference Figure 3-5.

Figure 3-5. Pin Setting Cam

1 PINSETTER 3 STRING 5 PIN IS NOT ON PIN DECK
2 SLOW SETTING CAM 4 STRING WAGON
String Control Unit (Spic)

The string control assembly consists of ten each of the following components: Refer to Figure 3-6.

- Solenoid to operate the string brake
- String clamp
- String-Reed Switch
- Magnet
- Friction Clutch
- String Roller

![Figure 3-6. String Control Components]

1. SOLENOID
2. STRING CLAMP
3. STRING
4. REED SWITCH
5. PERMANENT MAGNET
6. FRICTION CLUTCH
7. STRING ROLLER
Section 4 - Adjustments

STRING TENSION ADJUSTMENTS

The string tension adjustments can only be made after the pins have been secured to the strings. This adjustment can affect all other adjustments.

1. With the pinsetter power off, lock out the power.

⚠️ *Warning! Pinsetter power is to remain off while performing any manual function.*

2. Manually rotate the large drive pulley until the top of the pins are in the centering cone with out any slack on the string. The top of the pin should touch the bottom of the centering cone.

3. Lock the large drive pulley in this position.

4. If the pins won’t come into the centering cone, go to Step 5.

5. Slide the string spool to the left away from the locking pin. Refer to [Figure 4-1](#).

6. Rotate the string spool as required to obtain a gap of 1 mm to 5 mm between the limiter bar and the tension lever. Refer to [Figure 4-1](#).

7. When the proper gap has been obtained, move the string spool to the right and rotate it as required to align one of its holes with the locking pin. Refer to [Figure 4-1](#).

ℹ️ *NOTE: Rotating the spool as arrow (4) shows will reduce the tension. Rotating the spool as arrow (3) shows will increase the tension. Refer to Figure 4-1.*

Figure 4-1. String Tension Adjustments

1. PINSETTER CYCLED TO PINS UP POSITION
2. LIMITER BAR
3. TENSION LEVER
4. TURN AS ARROW SHOWS TO INCREASE EXTENSION
5. TURN AS ARROW SHOWS TO DECREASE EXTENSION
6. AWAY FROM LOCKING PIN
7. TOWARD LOCKING PIN
8. LOCKING PIN
9. LARGE DRIVE PULLEY
10. STRING SPOOL
STRING BRAKE ADJUSTMENTS

1. With the pinsetter power on, knock over some pins. The machine will cycle and should keep the knocked over pins in the up position.

2. Turn the pinsetter power off and lockout the power on/off switch.

⚠️ **Warning! Pinsetter power is to remain off while performing any manual function.**

3. Check the movement of the pin in the pin centering cone by pulling on the string. The travel of the pin movement should be $80 \text{ mm} \pm 20 \text{ mm}$. Refer to Figure 4-2.

![Figure 4-2. String Brake Adjustment](image)

1 CENTERING CONE
4. If travel is greater than 100 mm, move the string brake switch up. Refer to Figure 4-3.

Figure 4-3. Adjust Brake Switch
1 STRING BRAKE SWITCH 2 LOOSEN SCREWS TO ADJUST 3 SLIDE SWITCH HOLDER
 UP OR DOWN

5. If the travel is less than 60 mm, move the string brake switch down.

6. Repeat steps 1-3 to verify pin movement in pin centering cone.
PIN SLOW SETTING ADJUSTMENTS

1. Turn the pinsetter power on. Knock down some pins. When the string wagon travels to the rear of the string pinsetter, turn off the pinsetter power.

2. With the pinsetter power off, lock out the power.

3. The pins will travel to the pindeck by gravity.

⚠️ **Warning! Pinsetter power is to remain off while performing any manual function.**

4. Manually rotate the large drive pulley in reverse, raising the pins until the string wagon lever roller starts to touch the pin slow setting cam.

5. Lock the large drive pulley at this position.

6. Measure the distance the bottom of pins 1, 2, and 3 are from the pin deck. The distance should be 60mm ±20mm. Measure the distance the bottom of pins 4 – 10 are from the pin deck. The distance should be 80mm ±20mm.
7. If the distance is greater than 80mm or 100mm adjust the pin slow setting cam forward. If the distance is less than 40 mm or 60 mm adjust the pin slow setting cam back.

NOTE: The before and after position of the cams must be the same on both sides of the machine.

![Diagram of pinsetter parts](image)

Figure 4-4. Slow Setting Adjustment

1. LARGE DRIVE PULLEY
2. STRING WAGON
3. STRING WAGON LEVER
4. STRING WAGON ROLLER
5. PIN SLOW SETTING CAM
6. 60 mm + OR - 20 mm FOR LEVER PINS 1-3
7. 80 mm + OR - 20 mm FOR PINS 4-10
8. LOosen TO ADJUST
9. FORWARD
10. BACK
11. REAR OF STRING PINSETTER

StringPin Pinsetter Service Manual
FALLEN PIN DETECTION ADJUSTMENT

The detection sensitivity level for pin fall can be adjusted in a range of 1 to 15. There is a sensitivity level adjusting gear for each of 10 pins. They are located at the front of the machine just above the string spools. Refer to Figure 4-5.

The recommended sensitivity level setting is 10. The gears are marked every fifth tooth with numbers 1, 5, 10, and 15.

Figure 4-5. Fallen Pin Detection Adjustment

1 SENSITIVITY LEVEL ADJUSTING GEAR
Section 5 - Maintenance & Service

MAINTENANCE

⚠️ WARNING! When performing any maintenance, make sure the main power is turned off and the power plug has been disconnected.

Rotating Pins

ℹ️ NOTE: Pins should be inspected once a month.

Rotating pins in the 1 through 10 positions is necessary for long life of bowling pins. The rotation sequence of the bowling pins will depend on the bowling center and bowlers.

Pin Strings

Pin String Inspection and Repairing Worn String

ℹ️ NOTE: Strings should be inspected at least twice a month.

Check the strings for wear, paying particular attention to the area at the head of the pin. If worn, remove the section of string by performing the following steps.

1. If the strings are worn or frayed, cut the string off above the worn area.

2. Using a match or a lighter, melt the end of the string which will be inserted into the head of the pin. While the string is still hot, taper the end so it can be easily threaded through the holes in the head of the pin.

⚠️ WARNING! To avoid burning your hands wear gloves and use a rag to taper the melted string end.
3. Thread the string through the head of the pin and tie a knot in the end of the string. Leave approximately 1/2" (13 mm) of string extending beyond the end of the knot. Refer to Figure 5-1.

4. Pull the string back through the pin until the knot bottoms out in the pin. Refer to Figure 5-1.

5. Adjust the string tension for any pin where the string has been cut, and pin installed.

![Figure 5-1. Thread String Through Pin](image)

1. THREAD STRING INTO HEAD OF PIN
2. THE KNOT IN STRING LEAVING EXCESS OF 1/2" (13 MM)

New String Installation

To control the way the pins are lowered to the pin deck, a limiting bar is installed between the pinsetter side frames. The strings for pins 4 through 10 go over the limiting bar. The strings for pins 1 through 3 do not go over the limiting bar. Refer to Figure 5-2.

![Figure 5-2. String Paths](image)

1. LIMITING BAR

⚠️ **Warning!** Pinsetter power is to remain off while performing any manual function.

1. Cycle the pinsetter to first ball with ten pins on the pin deck.
2. Cut the string off any pin being replaced, just above its head. Refer to Figure 5-3.

![Figure 5-3. Restring Machine](image)

3. From a spool of replacement string, cut off a piece 16’ 5” (5004 mm) long for each pin having its string replaced.

4. Melt the cut end of the old string and one end of the new string. While the string ends are still hot, press them together and hold until they cool and form a joint. Cover the joint with electrical tape to increase its strength. Refer to Figure 5-3.

5. Thread the new string up to the spool by carefully pulling up the old string until the new string is at the string spool. Remove the tape at the joint between the old and the new string. Cut off and discard the old string. Refer to Figure 5-3.

6. Remove the old string from the spool. Tie a knot in the end of the new string. Slide the knot through the key slot in the spool shaft and secure it. Refer to Figure 5-3.

7. Secure the string to the pin, following the procedure detailed in “String Inspection and Repairing Worn String” in the “Pin Strings” section.
8. Wind the extra string onto the spool by rotating the spool as arrow (3) shows in *Figure 5-3.*

9. Adjust the spring tension for each new string, following the String Tension Adjustment.
LUBRICATION

Routine

Regular lubrication of the machine is necessary for a long machine life and good performance. The interval should be appropriate for the amount the machine is used. The more the machine is used, the more frequently it should be serviced.

- Every moving machine part should be lubricated from time to time.

- Every working part such as drive gears and drive chains, require more maintenance than low load parts.

- For large parts such as drive gears and chain sprockets, grease is the best lubricant

- For small parts, oil should be used.
Quarterly (3 Month)

- Apply grease to the chain with a paint brush to lubricate the chain’s exterior. Refer to *Figure 5-4*

- Lubricate the chain with oil. This oil will penetrate chain links to lubricate the chain’s interior. Refer to *Figure 5-4.*

- Apply oil to the pivot point where the string wagon is attached to the chain. Refer to *Figure 5-4.*

Semi Annually (6 Month)

- Grease through hole in switch cluster over located on the right side of the rear of the pinsetter. Refer to *Figure 5-4.*

- Remove cover from the motor and gear assembly located on the left side of the rear of the machine and grease gear. Refer to *Figure 5-4.*

- Press grease in chain gears through hole in plate located on the outside of pinsetter frame adjacent to gear. Refer to *Figure 5-4.*
Annually

- Apply grease to the string roller shaft. Refer to Figure 5-5.

![Figure 5-5. Grease String Roller](image1)

- Apply grease to the string lever with a paint brush. Refer to Figure 5-6.
- Apply a drop of oil on each side of the string lever. Refer to Figure 5-6.

![Figure 5-6. Grease String Lever With Paint Brush](image2)

1 OIL
2 GREASE
- Apply a drop of oil on each side of the string control units. Refer to Figure 5-7.

![Figure 5-7. Oil String Control Unit](image)

- Apply grease to the string wagon roller shaft and a drop of oil between the string wagon roller and the string wagon housings. Refer to Figure 5-8.

![Figure 5-8. Oil & Grease String Wagon](image)
Section 6 - Troubleshooting

SOLUTIONS TO COMMON PROBLEMS

1. Machine and Accelerator Will Not Run
 1. Check to see that the main switch is in the ON position.
 2. Make sure the power cord is properly installed.
 3. Check to ensure that the circuit breaker for the incoming power is not tripped or turned off.

2. One Machine Does Not Run
 1. Make sure the motor stop switch on the Pinsetter for the non-running motor is turned ON.
 2. Check to confirm that all electrical cables are properly installed.
 3. Check to confirm that the disentangle switch (under the red cover at the front of the right hand pinsetter side frame) is in the closed position.
 4. Make sure the “V” belt for the drive motor is not off the pulley or broken.

3. Accelerator Will Not Run
 1. Check the overload on the contactor for the accelerator motor to make sure it is not tripped.
 2. Make certain the accelerator drive belt is on the pulley and not broken.

4. Machine Will Not Stop After Completing a Cycle
 1. Make sure the ball detect light is on. (Has 5VDC or 24VDC to unit.)
 2. Check to see that the ball detect is clean and properly adjusted.
 3. Check the ball detect cable. This can be done by switching the cables with other machines on that pair of lanes.

5. Machine Starts and Stops When Attempting to Lift Pins
 1. Make sure there are not any pins or strings that are caught or not moving freely.
 2. One ore more pin strings have excessive spring tension.
 3. Improper string tension on the pinsetter motor.
 4. A replacement string has been improperly installed.
 5. Watch the disentangle switch to see if its actuator is functioning improperly.
6. **Machine Cycles and All Down Pins are Recognized by the Scorer. The Pinsetter Respots One or More of the Fallen Pins.**

 1. Check to see that the solenoid that locks knocked over pins in the up position is functioning.
 2. Check to make sure all pins are properly routed and free to move.

7. **After First Ball, the Head Pin is Bottomed Out on the Centering Cone Instead of Having a Gap of Approximately 80 mm**

 1. Open the string break manually and adjust the string tension (increase the length of the string).
 2. Make sure the string of the affected pin moves freely.
 3. Check the adjustment of the parallel and disentangle switches.
 4. Make sure that the string solenoid is not constantly actuated.
 5. Replace board number three with a board from a machine that is functioning properly.

8. **A Machine is Malfunctioning But You Cannot Isolate the Problem**

 1. To determine if the problem is in the electrical box or with the machine, exchange the electrical boxes with those of a pair that are working properly.
 2. If the problem follows the electrical boxes, exchange the control unit boxes. This should allow you to determine which of the boxes is causing the problem.

9. **Pins Fall When Being Spotted or are not Respotted Accurately**

 1. Check to see that the strings of the pin or pins being spotted are properly tensioned.
 2. Check the adjustment of slow setting cams.
 3. Check the location of the pin centering rings.
 4. Check the centering plate for a broken rubber bumper.
Section 7 - Cable Routing and Connections

ELECTRICAL CONTROL BOXES FOR ODD AND EVEN LANES

See the following pages.
Intentionally Blank Page
Figure 7-2. Even Lane Electrical Control Box
Figure 7-3. Ball Accelerator

StringPin Pinsetter Service Manual
Figure 7-4. Pin light
Figure 7-5. Ball Detect
Figure 7-6 1st & 2nd Ball Light
Figure 7-7. Motor
Figure 7-8. Ball Lift
The following is a description of the String Pin High Voltage PCB components and connections.

Fuses

1. **F1** - Fuse used to protect the ball lift relay from excessive current when turning the ball lift relay on. The fuse is rated at 250V 0.1A - fast blow.

2. **F2 – F4** - Fuses used to protect the accelerator from excessive current when turning the accelerator on. The fuse rating for 380V/208/220 power is 250V 1.6 A - fast blow.
F5 – F7 - Fuses used to protect the string pinsetter motor from excessive current when turning the string pinsetter motor on. The fuse ratings for 380V power is 250V 2.0 A and for the 208/220V power is 250V 3.15 A - fast blow.

F8 - Fuse used to protect the pin light from excessive current. The fuse is rated at 250V 2.0 A - fast blow.

F9 – F11 - Fuses used to protect the PC board from excessive current from the L1, L2, and L3 input power. The fuse ratings are 250V 4.0 A - fast blow.

F12 - Fuse used to protect the PC board from excessive current on the ground of the board. The fuse rating is 250V 0.5 A - fast blow.

F13 - Fuse used to protect the PC board from excessive current on the neutral of the board. The fuse rating is 250V 1.6 A - fast blow.

F14 - Fuse used to protect the PC board from excessive current on the 24V power line. The fuse rating 250V 10.0 A - fast blow.

LED

12V LED - This LED lights when the AC voltage for the 12 Volt circuitry is operating.

Lighting (Pin Light) LED - This LED lights when the voltage for the pin light circuitry is operating.

24V LED - This LED lights when the AC voltage for the 24 Volt circuitry is operating.

Engine LED - This LED lights when the voltage for the string pinsetter motor circuitry is operating.

Elevator (Ball Accelerator) LED - This LED lights when the voltage for the ball accelerator motor circuitry is operating.

Motor CLEAR LED - This LED is connected to T1 and T2 connectors. It will light if T1 or T2 has an open connection. The thermal overload protection of the accelerator and string pinsetter motors are usually connected to T1 and T2.

Jumper

JP1 - ????

Connectors

T1 - The string pinsetter thermal protection is connected to this connector.

T2 - The accelerator thermal protection is connected to this connector.

CON 26 - Communication between the CPU and High Voltage PCB.

Trato 24V - This connects to the transformer to convert input power of 380/220/208 to 24 VAC for the PCB.
(21) **Main Power** - Input power connection for the 3-phase power. This voltage can be 208, 220 or 380V AC.

(22) **Stop 1** - There are 2 stop switches on the machine. They are connected to Stop 1 in series

(23) **Stop 2** - If this connection is open the machine will not operate. We use a jumper to close this connection. This could be used with a stop switch if desired.

(24) **Ball-Lift** - This is a 24V AC supply for the ball lift relays. !NOTE: This is protect with at 250V 0.1A fast blow fuse.

(25) **Elevator (Accelerator)** - This provides three phase 380/220/208V power to the accelerator.

(26) **Engine** - This provides three phase 380/220/208V power to the string pinsetter motor

(27) **Light** - This provides single phase 220/208V power to the pin light.

(28) **Com Elevator (Accelerator)** - The odd and even control boxes of a lane pair are connected together at “Com Elevator”. The accelerator is connected to the odd lane control box. This is used to communicate from the even lane control box to operate the accelerator pinsetter.
The following is a description of the String Pin High CPU PCB components and connections.

Fuses

1. F15 - Fuse used to protect the CPU PCB from excessive current from the 24VAC input power. The fuse rating is 250V 2.0 A - fast blow

Connectors

2. CON 6 – Connection for the 1st and 2nd ball light

3. BILDANZEIGE AUSGANG – Connection to the Vector Scoring String Pin Interface for the bowling pin status

4. SHALTER & MAGNETE - ?????

5. KURVE - ?????

6. TASTER - NA

7. Bowling – NA

8. Ein - Connection to the Vector Scoring String Pin Interface to reset and turn the string pinsetter on/off
(9) Seileinzug – A push button is connected to toggle the pins up and down to adjust the tension of the string.

(10) Data Tota – NA

(11) Uebertr/Foul – NA

(12) Kugel – Ball detect connection

(13) RS232 - NA

(14) RS232 – 2 – NA

(15) CON 26 – Communication between the CPU and High Voltage PCB
Figure 7-11. Overview of Standard Cables
Figure 7-12. Overview of Buttons on Top of Interface

The following is a description of the pinsetter interface components and connections.

1. **Pinsetter On/Scoring Enabled** - When in the “Scoring Enabled” mode, the pinsetter will cycle by the scoring system. When in the “Pinsetter On” mode there is no communication to the scoring system.

2. **Ball Detect On** - Enables/disables the ball detects. When the ball detect is disabled, it will not record a ball passing. The disable function is for untangling pin strings or other service.

3. **Reset** - Cycles the machine

4. **Scoring Disabled** - Lit LED indicates “Pinsetter On” mode is enabled or “Ball Detect Off” is enabled
4. Splice the Reset Control cable (57-500927-000) to the Ball Rack Reset Buttons cable (55-083121-000). Refer to Figure 7-13.

NOTE: Differences between “P4” and “P2” reference “Troubleshooting” section, items #6 and #8 for further explanation when connecting this cable.

Interface Cable Installation

1. Route the String Pinsetter Interface cable (P/N 57-500281-000) from “P8” on the string pinsetter interface to the appropriate Pinsetter Control connection on the scoring computer. Refer to Figure 7-15.
Foul Cable Installation

1. Route the Foul cable (57-500928-000) from “P7” on the string pinsetter interface to the foul unit. Refer to Figure 7-16.

NOTE: “JP4” jumper “ON” for Brunswick foul unit. “JP4” jumper “OFF” for AMF foul units. Refer to Figure 7-24 and page 61.
Ball Detect and Reflector Mounting and Cable Installation

When installing ball detects on a pinsetter that already has detects installed, it is important to leave the original ball detects in place and operational. Generally a separation of 6” or more between ball detects is advised to avoid interference from one to the other.

1. From the center line of the #1 pin, measure 25” (635 mm) toward the foul line.

 NOTE: The measurement of 25” (635 mm) should prevent a string pin from falling toward the ball detect sensor and providing a false error.

2. Place the reflector assembly (55-860018-000) on the division kickback block with the center of the reflector align with the center of the ball.

3. Ball detect and reflector 1 should be 1-1/8” (29 mm) from ball detect and reflector 2.

NOTE: The ball detects and reflector assembly MUST be the same height on all the lanes of the bowling center.
3. Center the ball detect assembly (57-863173-000) between both return kickbacks with the center of the ball detect in line with the center of the reflector.

⚠️ **CAUTION! Ball Detect can be damaged if drill motor comes into contact with it.**

4. Screw the ball detect in place.

5. Attach the ball detect cable (57-500926-000) to the ball detect assembly.

6. Route the Ball Detect cable (57-500926-000) from P5 and P6 on the string pinsetter interface to the ball detects. *Refer to Figure 7-19.*

 a. Black/Green/Red to left lane ball detect.
 b. White/Blue/Orange to right lane ball detect.

![Figure 7-19. Route Ball Detect Cable](image)

NOTE: “JP5” jumper will need to be set for 5 VDC or 12 VDC. Vector ball detects require 12 VDC. *Refer to Figure 7-24 and page 58.*
Remote Ball Detect Switch Cable Installation

1. Route the remote ball detect switch from P12/P13 on the string pinsetter interface to the desired location for the switch. Refer to Figure 7-20.

![Figure 7-20. Route Ball Detect Cable](image)

2. **Ball Detect On** - Enables/disables the ball detects. When the ball detect is disabled, it will not record a ball passing. The disable function is for untangling cords or other services.

Pinsetter Interface Configuration

Refer to Figure 7-24 and pages 59-62 for location and proper setting of JP4, JP5, and dipswitch S1

1. **Foul Jumper (JP4)** - Jumper used to configure the interface so that it can properly handle the foul input signal. When using Brunswick foul units or foul units that uses a relay type (switch) output, install a jumper to short the pins. If using a foul unit that supplies +12VDC as an output (AMF) remove the jumper.

2. **Ball Detect Jumper (JP5)** - Jumper used to configure the interface PCB to power the ball detectors with 5VDC or a 12VDC. For Vector ball detects set the jumper to 12VDC.

3. **Dipswitch S1** - An eight position dipswitch used to configure the interface.
Figure 7-21. “SES” Cabling Overview
Pin Input Cable Installation

1. Route the Pin Input cable (57-500929-007) and On/Off Reset Cable (57-500930-000) from the Universal String Machine Interface to the Low Voltage Control Box of the SES String Machine.

2. Cut off excess cable.

3. Terminate the cut off end of the Pin Input cable (57-500929-000) using the pins (11-680981-000) and the connector (11-680018-000). Refer to Figure 7-22.

4. Connect the Pin Input cable (57-500929-000) to the “Bildanziege & Ausgänge” port on the low Voltage Control Box. It should be the third port from the edge of the board.”
Figure 7-23
Figure 7-24. Interface PCB
The following is a description of the Interface boxes’ components and connections.

(1) **Odd Switches (J1)** - Input for the “Pinsetter ON/Scorer Enabled” switch, “Ball Detect On/Off” switch and “Reset” (cycle) switch on the enclosure for the left/odd pinsetter.

(2) **Spare Outputs (J2)** - Unused outputs.

(3) **Even Switches (J3)** - Input for the “Pinsetter ON/Scorer Enabled” switch, “Ball Detect On/Off” switch and “Reset” (cycle) switch on the enclosure for the right/even pinsetter.

(4) **Alert Led (J4)** - Used for an enclosure mounted LED. When it is on, at least one of the pinsetters has either been manually turned on with the toggle switch on the enclosure or has turned off the ball detects.

(5) **Odd Pin Switches (J5)** - Input for the signals from the pin switches and quick set (on the Mendes pinsetters) on the left/odd pinsetter.

(6) **Reset Bypass (J6)** - Connection to allow the ball rack reset buttons to directly control the pinsetters, instead of having the interface board control when to reset the pins.

(7) **Odd Pinsetter Power/Reset (J7)** - Connection to the left/odd lane pinsetter. The interface PCB can turn the left/odd lane pinsetter on/off and reset (cycle) the pinsetter through this connection.

(8) **Ball Rack Reset Input (J8)** - Input for the ball rack reset buttons. The interface board will control when the ball rack reset buttons will reset the pins. Keeps the pinsetter and scorer in sync.

(9) **Left/Odd Ball Detect (J9)** - Connection for the signal and power for the odd lane ball detector.

(10) **Right/Even Ball Detect (J10)** - Connection for the signal and power for the even lane ball detector.

(11) **Foul (J11)** - Input for the signals from the foul units for both the left and right lanes. Also refer to (15) Foul Jumper (JP4).

(12) **Bumpers (J12)** - Connection to AMF/Qubica automated bumpers.

(13) **Right/Even Pinsetter Power/Reset (J13)** - Connection to the even lane pinsetter. The distribution PCB can turn the even lane pinsetter on/off and reset (cycle) the pinsetter through this connection.

(14) **Even Pin Switches (J14)** - Input for the signals from the pin switches and quick set (on the Mendes pinsetters) on the right/even pinsetter.

(15) **Serial COM (J15)** -

(16) **Watch Dog Timer (JP1)** - open watchdog disabled
(17) **Ground Point (JP2)** - Not used

(18) **+5VDC (JP3)** - Not Used

(19) **Foul Jumper (JP4)** - Jumper used to configure the interface so that is can properly handle the foul input signal. When using Brunswick foul units or foul units that uses a relay type (switch) output, install a jumper to short the pins. If using a foul unit that supplies +12VDC as an output (AMF) remove the jumper.

(20) **Ball Detect Jumper (JP5)** - Jumper used to configure the interface PCB to power the ball detectors with 5VDC or a 12VDC. For Vector ball detects set the jumper to 12VDC.

(21) **Left/Even Lane Reset Relay (K1)** - When energized the left/even lane pinsetter triggers.

(22) **Left/Even Lane Power Relay (K2)** - When energized the left/even lane machine turns on.

(23) **Right/Odd Lane Reset Relay (K3)** - When energized the right/odd lane pinsetter triggers.

(24) **Right/Odd Lane Power Relay (K4)** - When energized the right/odd lane machine turns on.

(26) **LED D14** - “On” when +5VDC is present (board power).

(27) **LED D16** - Blinking when the microprocessor is running.

(28) **LED D17** - “On” when the left/odd lane reset relay is energized to reset new pins.

(29) **LED D18** - “On” when the left/odd lane power relay is energized, turning the pinsetter on.

(30) **LED D19** - “On” when the right/even AMF/Qubica automated bumper is up.

(31) **LED D20** - “On” when the left/odd AMF/Qubica automated bumper is up.

(32) **LED D21** - “On” when the right/even lane reset relay is energized to reset new pins.

(33) **LED D22** - “On” when the left/odd lane power relay is energized, turning the pinsetter on.

(34) **LED D23** - “On” when the left/odd lane is executing a quick set/cycle. (Mendes pinsetters)

(35) **LED D24-D33** - Used to indicate the state of the pins for the left/odd lane. Depending on pinsetter type, “On” could indicate either up or down. Model “R” – On is down. Model 81-10 – On is up. Mendes 201E – On is up.

(36) **LED D34** - “On” when the right/even lane is executing a quick set/cycle. (Mendes pinsetters)
(37) **LED D35-D44** - Used to indicate the state of the pins for the right/even lane. Depending on pinsetter type, “On” could indicate either up or down. Model “R” – On is down. Model 81-10 – On is up. Mendes 201E – On is up.

(38) **LED D45** - “On” when a ball detect signal occurs for the left/odd lane.

(39) **LED D46** - “On” when a ball detect signal occurs for the right/even lane.

(40) **LED D47** - “On” when a foul occurs on the right/even lane.

(41) **LED D48** - “On” when a foul occurs on the left/odd lane.

(42) **LED D49** - Flashes when the interface is receiving a message from the scorer.

(43) **LED D50** - Flashes when the interface is transmitting a message to the scorer.

(44) **Dipswitch S1** - An eight position dipswitch used to configure the interface.

Position 1 - Standing Pin Polarity - If the pin LEDs (D35-D44 or D24-D33) for a standing pin are off, then switch position should be OFF. If the pin LEDs (LED’s D35-D44 or D34-D33) are on for a standing pin, then the switch position should be ON.

Position 2 (5 pin pinsetter) - The switch is ON for 5 pin.

Position 2 (10 pin pinsetter) - The switch is OFF for 10 pin.

Position 3 - Quick Set - If the switch is ON, then interface will monitor and react to quick sets/cycles from the pinsetter. (On for Mendes 201E and 501E)

Position 4 - Pinsetter strike cycle communications - If the switch is ON the pinsetter will cycle with no communication from Vector Scoring. If the switch is OFF the pinsetter will wait to have Vector Scoring cycle the pinsetter.

Positions 5-8 - Not Used.
Section 8: Cables

Ball Accelerator Motor Protection Cable Assembly (P/N 55-083119-000)

Ball Light Adapter Cable Assembly (55-083120-0000)

Ball Lift Control/Reset (55-083121-000)

Ball Lift Power Transformer Cable Assembly (55-083129-000)

Pinlight Adapter Cable Assembly (P/N 55-083131-000)
Scanner Data - Cable Assembly (P/N 57-500281-000)

String Machine Controller Switch Inputs - Cable Assembly (P/N 57-500922-000)

Remote Ball Detect On/Off Switch - Cable Assembly (P/N 57-500925-000)

Ball Detect - Cable Assembly (P/N 57-500926-000)
Bowler Reset - Cable Assembly (57-500927-000)

String Pinsetter Foul - Cable Assembly (57-500928-000)

Pin Switch Inputs - Cable Assembly (57-500929-000)
On/Off Reset - Cable Assembly (P/N 57-500930-000)

SES String Pinsetter Pin Input - Field Assembly (57-500929-007)